Using a Genetic Algorithm to Solve a Bi-Objective WWTP Process Optimization
نویسندگان
چکیده
When modeling an activated sludge system of a wastewater treatment plant (WWTP), several conflicting objectives may arise. The proposed formulation is a highly constrained bi-objective problem where the minimization of the investment and operation costs and the maximization of the quality of the effluent are simultaneously optimized. These two conflicting objectives give rise to a set of Pareto optimal solutions, reflecting different compromises between the objectives. Population based algorithms are particularly suitable to tackle multi-objective problems since they can, in principle, find multiple widely different approximations to the Pareto-optimal solutions in a single run. In this work, the formulated problem is solved through an elitist multi-objective genetic algorithm coupled with a constrained tournament technique. Several trade-offs between objectives are obtained through the optimization process. The direct visualization of the trade-offs through a Pareto curve assists the decision maker in the selection of crucial design and operation variables. The experimental results are promising, with physical meaning and highlight the advantages of using a multi-objective approach. 1 Multi-objective Optimization We apply the Multi-objective Elitist Genetic Algorithm (MEGA), described in [3] to the WWTP multi-objective optimization problem. This approach, in contrast to other algorithms, does not require any differentiability or convexity conditions of the search space. Moreover, since it works with a population of points, it can find, Lino Costa · Isabel A. C. P. Espı́rito-Santo · Edite M. G. P. Fernandes Department of Production and Systems, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal e-mail: {lac,iapinho,emgpf}@dps.uminho.pt Roman Denysiuk Algoritmi R&D Center, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal email: [email protected]
منابع مشابه
Application of Particle Swarm Optimization and Genetic Algorithm Techniques to Solve Bi-level Congestion Pricing Problems
The solutions used to solve bi-level congestion pricing problems are usually based on heuristic network optimization methods which may not be able to find the best solution for these type of problems. The application of meta-heuristic methods can be seen as viable alternative solutions but so far, it has not received enough attention by researchers in this field. Therefore, the objective of thi...
متن کاملA Bi-objective Optimization for Vendor Managed Inventory Model
Vendor managed inventory is a continuous replenishment program that is designed to provide major cost saving benefits for both vendors and retailers. Previous research on this area mainly included single objective optimization models where the objective is to minimize the total supply chain costs or to maximize the total supply chain benefits. This paper presents a bi-objective mathematical mod...
متن کاملSolving a New Multi-objective Inventory-Routing Problem by a Non-dominated Sorting Genetic Algorithm
This paper considers a multi-period, multi-product inventory-routing problem in a two-level supply chain consisting of a distributor and a set of customers. This problem is modeled with the aim of minimizing bi-objectives, namely the total system cost (including startup, distribution and maintenance costs) and risk-based transportation. Products are delivered to customers by some heterogeneous ...
متن کاملOptimization of Functionally Graded Beams Resting on Elastic Foundations
In this study, two goals are followed. First, by means of the Generalized Differential Quadrature (GDQ) method, parametric analysis on the vibration characteristics of three-parameter Functionally Graded (FG) beams on variable elastic foundations is studied. These parameters include (a) three parameters of power-law distribution, (b) variable Winkler foundation modulus, (c) two-parameter elasti...
متن کاملBi-objective Optimization of a Multi-product multi-period Fuzzy Possibilistic Capacitated Hub Covering Problem: NSGA-II and NRGA Solutions
The hub location problem is employed for many real applications, including delivery, airline and telecommunication systems and so on. This work investigates on hierarchical hub network in which a three-level network is developed. The central hubs are considered at the first level, at the second level, hubs are assumed which are allocated to central hubs and the remaining nodes are at the third ...
متن کامل